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Perturbative evaluation of Kolmogorov constant in a self-consistent model of fluid turbulence
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The response integrals of the almost Markovian-Galelian invariant test-field nibElsl) of Kraichnan,
generalized ta dimensions, are analyzed. They are found to be both ultraviolet and infrared finite in the range
0<y<6, the force correlation being k~9*4~Y in the wave-number space. The ultraviolet and infrared poles,
occurring, respectively, at=0 andy=6, are extracted by means of Laurent expansions about these values of
y, yielding the Kolmogorov constant both in three and two dimensi@ig,=1.64 andC,,=8.097. These
values are remarkably close to the respective renormalization gRGp results. However, unlike RG, the
perturbative TFM results are found to kepproximately equally sensitive tdoth (ultraviolet and infrared
poles in both three and two dimensions.
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[. INTRODUCTION identified it with a divergence in the response integral com-
ing from the large scales of motion. To systematically elimi-
It is well known that the spectrum for the conservative nate the spurious effect of sweeping, Kraichnan reformulated
cascade of energy in a turbulent fluid takes the universahe theory in a Lagrangian frame wofk3], which indeed

Kolmogorov form[1,2] was found to be consistent with the Kolmogorov spectrum.
n This confirms that the failure of the direct-interaction ap-
E(k)=C &% 53 (1)  proximation was indeed associated with the spurious sweep-
o . . ing.
(neglecting intermittency correctionswherek is the wave The Lagrangian formalism being too cumbersome, Kra-

number,e is the energy injection rate, ar@lis the universal ichnan considered the Eulerian model problem of the advec-
Kolmogorov constant. This spectrum was obtained by Kol-tion of a general vector field, called the test field, by the
mogorov [1] for three-dimensional turbulence on dimen- purely solenoidal velocity field of fluid motiofiL4,15. This
sional arguments where a direct energy cascade, from larggelded the dynamics of the solenoidal and compressive parts
to small scales, takes place. Kraichnan conjectured the validsf the test-field separately. On removing the self-advection
ity of this spectrum in two-dimensional turbulence alsoterms in these equations, and giving a DIA-like treatment
where an inverse energy cascade, from small to large scalemgether with Markovianization of the equations, Kraichnan
must take placg3,4]. Absolute equilibirium ensemble in two obtained a theory which is self-consistent for the Kolmog-
dimensions suggests the possibility of negative-temperaturerov spectrun{and, in fact, also for the Kraichnan-Batchelor
states with a pile up of energy toward a large s¢8le The  spectrum for the enstrophy cascade in two-dimensional tur-
mean-square vorticity being a conserved quantity in two di-bulence. He also calculated numerically the Kolmogorov
mensions, the energy dissipation rate approaches zero in titenstant both in three and two dimensi¢@$].
limit of zero viscosity, hence excluding the possibility of In this paper we analyze the analytic properties of the
direct cascade of enerdyt]. Various developments in the response integrals of Kraichnan's Galelian invariant self-
phenomenologies and “microscopic” formulations of the consistent mode(test-field model, abbreviated THNjener-
theories of two- and three-dimensional turbulences havelized tod dimensions and subsequently perform perturba-
been reviewed in Ref$5-8]. tive evaluation of these integrals. Such integrals occur in
Kraichnan formulated the well-known direct-interaction critical dynamicq16] of systems as varied as liquid helium,
approximation(DIA) [9,6], a theory of turbulence which re- antiferromagnet, Heisenberg ferromagnet, etc., and perturba-
sembles the Dyson-Schwinger formulation of quantum fieldive methods of evaluations of the integrals occurring in criti-
theory (QFT) [10]. A diagrammatic expansion based on thecal dynamics have been considered by Bhattacharjee and
Navier-Stokes equation and subsequent renormalization biyerrell [17]. In the case of Kraichnan’s test-field model of
resummation, as shown by Wyl[d 1], makes the analogy turbulence, we find that the response integrals are both ultra-
with QFT even more transparent. violet and infrared finite in the region<Qy<6, where the
Unfortunately, the DIA has the difficulty of being self- parametery comes from the force correlationk 9747 in
consistent for the Kolmogorak™ %2 spectrum believed to be the wave-number space. Subsequently, we evaluate these in-
true for real turbulencéexcluding minor intermittency cor- tegrals perturbatively by extracting the ultraviolet and infra-
rections. Kraichnan identified this failure with the sweeping red poles, occurring, respectively, g=0 and y=6 by
of smaller eddies by the larger ones, while Edwaltig] means of Laurent expansions about these valugs dhis
facilitates the evaluations of the Kolmogorov constant both
in three and two dimensions, resulting €;p=1.64 and
*FAX: +91 361 690762. Email addresses: mknandy@iitg.ernet.ifC,p=8.097. These values are remarkably close to the re-
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note that RG and TFM have entirely different starting points. 4g2K2 E(p)

The RG scheme usues tf&ull) Navier-Stokes dynamics ns(k)z—f d’ bS(k,q,p) ,
(with random stirring as the starting point whereas for TFM Sy(d—1)? 73(k)+ n°(a) + n(p)
the starting point is the pressureless advection of a test field (7)
where the self-advection terms are subsequently dropped

from the dynamics in the construction of the model. We find . 29°%k? 4o v C E(p)

the most surprising fact that the TFM perturbative results are” (k)= mf dp b~(k,q,p) (k) + 75(q) + 7( )’
(approximately equally sensitive to the ultraviolétUV) and K Q)T p(8)

infrared (IR) poles in both three and two dimensions. This

feature of the perturbative TFM is entirely different from the j, g space dimensions, wheng(k), 7°(k), and 5(k) are
known RG schemes which is an expansion about only onghe respective relaxation rates, agg=27%4T(d/2). The
value ofy (=0 or 6). A detailed analysis of the calculations scajing factorg was introduced by Kraichnan as the model is
and the result have begn presented in the last se@en 5 equally plausible with respect to scaling the characteristic
bringing out various differences between RG and perturbagmes. This was evaluated by Kraichnan considering equilib-
tive TEM. rium situation where the direct-interaction approximation is

expected to be exact, yielding=1.064. The geometrical
Il. KRAICHNAN'S MODEL factors in the above integral¥) and (8) are given by

Markovian-Galilean invariant model[14,15 (test-field bS(k,q,p)= Ebc(k,q,p): - — -
mode) to d space dimensions. This model considers advec- 2 2 kp kq
tion of a general vector field(x,t) by the purely solenoidal
fluid dynamic velocity fieldu(x,t), the Fourier transform of
which can be written ird space dimensions as

In this section we generalize Kraichnan's almost 1{1 (k'p)ZH (k-q)z]

Further, Kraichnan identified the following correlation be-
tween the solenoidal part and the actual velocity field:

d
vi(k,t)=—ik|f (sﬂzdu|(p,t)vi(q,t)+fi(k,t), (kv K ) =(ui(k, (k. t")). (10)

J
e 2
( s + vk
(2)  We assume that the solenoidal velocity field has the correla-
tion
where v is the viscosity,q=k—p, and the steady state is
?(sttj)med to be supported by the external random forcing fle@ui(k,t)uj(k’,t'))=Q(k,t)Pij(k)(2ﬂ-)d6d(k+ k')g(t_zfl)l_)
Now considering the solenoidal and compressive parts of
the field v(x,t), and dropping the self-advection terms, the We shall further assume that the external driving fields have
respective dynamical equations become Gaussian white noise statistics, and the solenoidal part has
the correlation

LA -S(kt)=—ikP--(k)f ﬂu( t)vC(q,t) S S(K’ S d : :

ot vi(k, 1Pij 2m" p.t)vy(q, (kDK t)) =FS(k) Py (k) (2m) 4%k + k )5(t—t(1)2,)
+13(k, 1), (3) with

i+V|<2 vc(kt)=—ikH--(k)f ﬂu( t)o(q,t) 2D

ot i ' 144i] (27T)d 1(Ps j a, Fs(k):kdf—;iy’ (13)
+1o(k, 1), (4)

wherey is an external parameter. It follows from the above
where the superscripts and © denote the solenoidal and relations that
compressive  parts, respectively, andP;;(k)= (4

—kik;j /k?), andIL;; (k) =kk;/k%. Further FS(k)
Q(k,0)=—2 S (14
wi(k, ) =Py (K)wj(k,1), (5) 7(K)
Wic(k,t)=l'[ij(k)wj(k,t), ©6) The energy spectrur(k), in the steady state, is defined

through
for any general fieldv(x,t), the Fourier transform of which

. 1 0

Swik.f). . - S(U(x,1)= f E(k)dk, (15
Now giving the equations a similar treatment as that of 2 0

the direct-interaction approximation and after Markovianiza-

tion, one obtains, for steady state so that it is related to the velocity correlation by
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d-1 S, The expansion of the characteristic memory time of the form
E(k)=—— ——5k* 'Q(k,0). (16) 019K, 0,P)=[71(K) + 72(q) + 73(p)]1~*, where the damp-
(2m) ing factors have the formy; (k) =c;k? Y3 (i=1,2,3) can be
obtained as

With this formulation of the test-field model generalized
to d dimensions, we now proceed to find the analytic prop-

erties of the response integrdl® and (8). 1 y| ¢ kp
p gra® and 8) burdk.0p) = _ 1+(2__) s kP
(cotcy)p? ™Y 3/ ¢t p
IIl. PROPERTIES OF THE RESPONSE INTEGRALS
Assuming thaty(k), 75(k), and 5°(k) scale like k?, +} (22)
power counting in Eqs(7) and (8) givesz=2-y/3, after
making use of Eqg13), (14), and(16). Consequently we get
(k) ~k> YR and E(k) ~ k=23, So we take where the constants can be identified with those appearing
in Egs. (17), (18), and(19). Combining the above two ex-
73(k) = uSYCe V2V, (17)  pansions, we get
7°(k) = uCCe V", (18 . 1 k-p|2)|2
6129k,q,p)b (k,q,p)=2—m 1- kp
7(K)= u\Ce Y428, (19 (C2+Ca)p
_ C k
E(k)=Cs?%1~ 25, (20) |1+]24[2- Y| S|P
3/cat+C3) p?
Thus the Kolmogorov spectruriE(k)~k~°? is obtained
wheny=4, 4. 23)
To find the ultraviolet behaviorpg— <) of the response

integrals(7) and (8), we expand the integrand in the limit
p>k, and then pick up the lowest-order contributiorkiip.

In this limit we haveg~p, 7(p)~ 7(q)> n(k) (suppressing

the superscripls and bS(k,q,p)~1. Thus the integral be-

. _y/3 . .
haves like p which diverges only fory§0, yvhenp make any difference so far as expansion(like that in
—o0, Thus, for the Kolmogorov spectrum which is ObtamedYakhot-Orszag RG calculationss concerned

for y=4, the integrals do not pose any problem in the ultra- Now we Taylor expand the integrands in the limi€k in

violet limit. . S 2
For the infrared limit p—0), we expand the integral in order to obtain the IR pole. This gives

the limit p<k and subsequently pick up the lowest contrib- 5 -
uting order inp/k. Now, q~k, n(p)<n(k)~n(q), and bS(K _ 1 P, (kP
bS(k,q,p) ~ p?/k%. Thus, the integrals behave likg~ 23, 124K, Q. P)O7K A P) = 5o kp
and hence the integrals diverge for 6. Thus we find again
that the integral is well behaved on the infrared side for the +ee (24)
Kolmogorov casg/=4.

Thus the response integrdl® and(8) are both ultraviolet  for y=6, for which the integrals are IR marginal.
and infrared finite in the regionQy<6. Consequently, this Using the above expanions from E@21), (22), (23), and
situation is unlike the direct-interaction approximation, (24) in Egs.(7) and (8), after properly identifying the con-
where the response integral divergesyer3, giving rise to  stantsc; with those appearing in Eq$17), (18), (19), and

Thus we observe that the-p term in the square brackets
contributes nothing as the angular integration of odd powers
of k-p vanish. Consequently, thg dependance does not

a spurious non-Kolmogorok ™~ ¥2 spectrum. using Eq.(20) and the following results for angular integra-
tions
IV. PERTURBATIVE EVALUATION

Having analyzed the behavior of the response integrals, jg dQ=s, ?ﬁ co2d dQ:%
we now set out to evaluate the integrals in E@8.and (8) ’ d’
by means of Laurent expansions about the UV and IR poles and
aty=0 andy=6, respectively.

For the UV pole, the integrands are to be Taylor expanded
in the limit p>k. The geometrical factor given by E¢Q) 354
yields the expansion as é cos'0 dQ = d(d+2)’ (29)

2)2
bS(k,q,p) = 1 1— Q 1+ HJF ...t. (21  Whered is the angle betweek andp, we finally obtain the
2 k 2 i
p Laurent expansion about the poles 0 andy=6 as
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V. DISCUSSION AND CONCLUSION
s 5 (d+1) 1 1

#>=6g d(d=1)(d+2)| uC+ §+O(1) The main difficulty in evaluating the response integrals
(7) and(8), exactly by analytical means, arises because they
1 contain scale dependent relaxation rates as sums in the de-
t—<—=¢ v 0(1)] , (26 nominator of the integrands. The relaxation rates obey a scal-

Tt y ing law, with fractional powers, leading to impossibility of

evaluating these integrals exactly. Such integrals occur in

C_pg? (d+1) 1 E+O " critical dynamics of systems as varied as liquid helium, an-
m=59 d(d+2)| xS+ puly (1) tiferromagnet, Heisenberg ferromagnet, etc., and various per-

turbative methods of evaluation of such integrals occuring in

1 critical dynamics have been considered by Bhattacharjee and

+ T =y +0(1)] : (27)  Ferrell[17].

We realize the importance of the application of the pertur-
bative evaluation procedure in the case of the Kraichnan’s
test-field model of turbulence, because now we can compare
the perturbative results with the exact ones. Kraichnan’s ex-

1 act results by numerical computation atgp=1.40, C,p
3a?+4a=——(a’+T7a+6) (28)  =6.694, andC,p/C3p=4.786[15]. When we compare them
2 with the lowest-order perturbative results of our calculations
presented in the last sectifin Egs.(33), (34), and(35)], we
see that there is a good agreement between the results, keep-
ing in mind the extent of approximation involved in the
2042—3a—6=0, (29) present evaluation_ procedure: It may be pointed out that in
Kraichnan’s(numerical evaluation, the parametgmwas held
fixed at the Kolmogorov value of 4, whereas in the present
perturbative scheme, we extracted the singularitieg=a0
3+ /57 andy=6, and retained only the lowest-order terms. Consid-
(30 ering this, we can say that the perturbative evaluation
method yields reasonable estimates for the universal num-
bers.

The motivation for such perturbative evaluation by a
double expansion about only two points can be justified
when we see that a response integréy) say, is a function

Now writing x/uS=a, and using the Kolmogorov value
y=4, we get after dividing Eq(27) by Eq. (26)

in the lowest order.
Thus in three dimensions, we have

yielding

giving «=2.6375, choosing the positive sign. Using this re-
sult in Eq.(26) yields x5=0.3758). These results may be
compared with Kraichnan’s numericdexac) results, a
=2.163 andu°=0.296).

In two dimensions, on the other hand, we have ofy, and it has poles at several poigts y., ¥, . .. . Thus,
a Laurent expansion around all its poles can be constructed,
502+ a—6=0, 3y  Yielding
yielding a, a,
l(y)= ot ooty (36)
—1+11 Y=Y1 Y=Y2
where a;, a,,... are the corresponding residues

so thata=1, exactly matching Kraichnan’s result. Using (strengths The poles aty=0 andy=6 being the closest
this result in Eq.(27), we obtainuS=21/33=0.8101y,  ones to the physical Kolmogorov valye=4, we expect that

whereas Kraichnan obtaingd®=0.609. these poles will yield the maximum contribution.
Using the above results, the Kolmogorov constants can be We further point out an interesting feature of the pertur-
evaluated, using Kraichnan’s resuls5] bative results when we compare them with the existing re-

sults of renormalization groufRG) calculations in three and

C3p=3.023 15)#%=1.573@?°=1.6401, (33  two dimensions. Yakhot and Orszftg] used a Wilson type
decimation scheme to carry out the RG calculations in three

Cop=8.94 15)?*=7.7689%°=8.09696, (34  dimensions coupled with am expansion(see also Refs.

[19,2Q), leading toC3p=1.6057. Olla[21], on the other
and hand, used a field-theoretic RG formalism for the case of
two-dimensional turbulence. Olla’s result was shown to be

CADZ 4.94 (35 consistent with a self-consistent formulation based on dy-
Csypp namic scaling ideas in Ref22]. It may be pointed out that
Olla [21] used a definition ofE(k) different from that of
in the lowest order of our perturbative evaluation. Kraichnan [15]. A definition consistent with Kraichnan
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would introduce a factor of in Eq. (6) of Ref.[21]. Then As noted above, the selective choice of interactions in
Olla’s (correc} result would beC,,=8.123. TFM is made in order to gauge the effect of pressure. Con-
Thus we see that the RG results are in close agreemesgquently, TFM involves the geometrical factors®(k,q, p)
with our results of perturbative evaluations obtained in Egsin the response equatiofig) and(8), given by Eq.(9). As a
(33) and(34). As we know, the RG schemes are baseceon esult, the IR limitp<k yields O(p?/k?) term in the lowest
expansion only about one point: abgut 0 in three dimen- ~ contributing order, as can be seen in E2d). It is, in fact,
sions and aboug=6 in two dimensions. However, when we this (extra factor of p2/k? that makes TFM finite in the IR
look at the results of our perturbative evaluation, we find thafiMit, and we now see that it contributes equally strongly as

the UV pole.

s 492[0.275 0.21 This is at variance with the RG schemes which pick up
:a T’Lﬂ ' 37 contribution from only one of the poles depending on the
space dimension. The Yakhot-Orszag RG in 3D recursively

8g%[0.5 0.21 eliminates modes from the UV end using the full Navier-
Mczs—[— +6T€1’ (38 Stokes equation, with an imposed self-similarity of the recur-

mLy y sive procedure. This allows an expansion only abpsatO
in three dimensions and (reminiscent of extraction of UV pojend the IR behavior is

irrelevant in this RG scheme. It may be noted in passing that

s C_392 0.5 0.33 Kraichnan’s DIA closure, also based on the full Navier-

i vy 7+E B9 stokes equatioflike RG), with no imposed selective choice

of interaction(unlike TFM), involves a different geometrical
in two dimensions. Thus we see the most interesting factactor b(k,q,p) in its response equation. Consequently, the
about the perturbative TFM result that both the UV and IRIR limit p<k yields O(p°/k°) term in the lowest contribut-
poles have strengths of the same order of magnitude. Coring order, leading to IR catastrophe. In two dimensions, Ol-
squently, the TFM closure i@pproximately equally sensi- la's RG is based on the Navier-Stokes equation augmented
tive to both the poles. This feature of the perturbative TFMwith a drag term. In its field-theoretic setup with minimal
results is in sharp contrast with the RG schemes, althoughubtraction, it extracts only the IR pole y&=6. The drag
the resulting Kolmogorov constants are in agreement witherm in the dynamics plays an important role in this RG
each other. This difference in pole structures in the two apscheme.
proachesRG and TFM is not unexpected because the un- It is because of the above differences in the underlying
derlying formulations of RG and TFM are entirely different. formulations (of RG and TFM that RG is an expansion
In both the Yakhot-Orszag RG and the RG of Olla, the startabout only one value of (0 or 6 depending on dimensipn
ing points were théforced full Navier-Stokes equation. In  whereas, in perturbative TFM, both the poles are relevant;
contrast, Kraichnan's test-field model starts with the presthe difference in the pole structures is not therefore unex-
sureless advection of a test field and subsequently the selpected. However, what we would not have expected about
advection terms in the dynamics of the solenoidal and comthe perturbative TFM is the surprising result that the two
pressive parts are thrown away. Given the difference in th@oles have roughly equal strengths in both three and two
backbones of the two approach&G and TFM, itis worth-  dimensions. And, to add more, the Kolmogorov constants
while to discuss further about the origin of the differencesfollowing from the perturbative TFM agree well with the

between RG and TFM. results of RG.
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