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Perturbative evaluation of Kolmogorov constant in a self-consistent model of fluid turbulence

Malay K. Nandy*
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~Received 4 June 2002; published 28 October 2002!

The response integrals of the almost Markovian-Galelian invariant test-field model~TFM! of Kraichnan,
generalized tod dimensions, are analyzed. They are found to be both ultraviolet and infrared finite in the range
0,y,6, the force correlation being;k2d142y in the wave-number space. The ultraviolet and infrared poles,
occurring, respectively, aty50 andy56, are extracted by means of Laurent expansions about these values of
y, yielding the Kolmogorov constant both in three and two dimensions:C3D51.64 andC2D58.097. These
values are remarkably close to the respective renormalization group~RG! results. However, unlike RG, the
perturbative TFM results are found to be~approximately! equally sensitive toboth ~ultraviolet and infrared!
poles in both three and two dimensions.
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I. INTRODUCTION

It is well known that the spectrum for the conservati
cascade of energy in a turbulent fluid takes the unive
Kolmogorov form@1,2#

E~k!5C «̄2/3k25/3 ~1!

~neglecting intermittency corrections!, wherek is the wave
number,«̄ is the energy injection rate, andC is the universal
Kolmogorov constant. This spectrum was obtained by K
mogorov @1# for three-dimensional turbulence on dime
sional arguments where a direct energy cascade, from l
to small scales, takes place. Kraichnan conjectured the v
ity of this spectrum in two-dimensional turbulence al
where an inverse energy cascade, from small to large sc
must take place@3,4#. Absolute equilibirium ensemble in two
dimensions suggests the possibility of negative-tempera
states with a pile up of energy toward a large scale@3#. The
mean-square vorticity being a conserved quantity in two
mensions, the energy dissipation rate approaches zero i
limit of zero viscosity, hence excluding the possibility
direct cascade of energy@4#. Various developments in th
phenomenologies and ‘‘microscopic’’ formulations of th
theories of two- and three-dimensional turbulences h
been reviewed in Refs.@5–8#.

Kraichnan formulated the well-known direct-interactio
approximation~DIA ! @9,6#, a theory of turbulence which re
sembles the Dyson-Schwinger formulation of quantum fi
theory ~QFT! @10#. A diagrammatic expansion based on t
Navier-Stokes equation and subsequent renormalization
resummation, as shown by Wyld@11#, makes the analogy
with QFT even more transparent.

Unfortunately, the DIA has the difficulty of being sel
consistent for the Kolmogorovk25/3 spectrum believed to be
true for real turbulence~excluding minor intermittency cor
rections!. Kraichnan identified this failure with the sweepin
of smaller eddies by the larger ones, while Edwards@12#
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identified it with a divergence in the response integral co
ing from the large scales of motion. To systematically elim
nate the spurious effect of sweeping, Kraichnan reformula
the theory in a Lagrangian frame work@13#, which indeed
was found to be consistent with the Kolmogorov spectru
This confirms that the failure of the direct-interaction a
proximation was indeed associated with the spurious swe
ing.

The Lagrangian formalism being too cumbersome, K
ichnan considered the Eulerian model problem of the adv
tion of a general vector field, called the test field, by t
purely solenoidal velocity field of fluid motion@14,15#. This
yielded the dynamics of the solenoidal and compressive p
of the test-field separately. On removing the self-advect
terms in these equations, and giving a DIA-like treatme
together with Markovianization of the equations, Kraichn
obtained a theory which is self-consistent for the Kolmo
orov spectrum~and, in fact, also for the Kraichnan-Batchel
spectrum for the enstrophy cascade in two-dimensional
bulence!. He also calculated numerically the Kolmogoro
constant both in three and two dimensions@15#.

In this paper we analyze the analytic properties of
response integrals of Kraichnan’s Galelian invariant se
consistent model~test-field model, abbreviated TFM! gener-
alized tod dimensions and subsequently perform pertur
tive evaluation of these integrals. Such integrals occur
critical dynamics@16# of systems as varied as liquid helium
antiferromagnet, Heisenberg ferromagnet, etc., and pertu
tive methods of evaluations of the integrals occurring in cr
cal dynamics have been considered by Bhattacharjee
Ferrell @17#. In the case of Kraichnan’s test-field model
turbulence, we find that the response integrals are both u
violet and infrared finite in the region 0,y,6, where the
parametery comes from the force correlation;k2d142y in
the wave-number space. Subsequently, we evaluate thes
tegrals perturbatively by extracting the ultraviolet and infr
red poles, occurring, respectively, aty50 and y56 by
means of Laurent expansions about these values ofy. This
facilitates the evaluations of the Kolmogorov constant b
in three and two dimensions, resulting inC3D51.64 and
C2D58.097. These values are remarkably close to the
spective renormalization group~RG! results. However, we

in
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note that RG and TFM have entirely different starting poin
The RG scheme usues the~full ! Navier-Stokes dynamics
~with random stirring! as the starting point whereas for TFM
the starting point is the pressureless advection of a test
where the self-advection terms are subsequently drop
from the dynamics in the construction of the model. We fi
the most surprising fact that the TFM perturbative results
~approximately! equally sensitive to the ultraviolet~UV! and
infrared ~IR! poles in both three and two dimensions. Th
feature of the perturbative TFM is entirely different from th
known RG schemes which is an expansion about only
value ofy (50 or 6). A detailed analysis of the calculation
and the result have been presented in the last section~Sec. 5!
bringing out various differences between RG and pertur
tive TFM.

II. KRAICHNAN’S MODEL

In this section we generalize Kraichnan’s almo
Markovian-Galilean invariant model@14,15# ~test-field
model! to d space dimensions. This model considers adv
tion of a general vector fieldv(x,t) by the purely solenoida
fluid dynamic velocity fieldu(x,t), the Fourier transform of
which can be written ind space dimensions as

S ]

]t
1nk2D v i~k,t !52 ik lE ddp

~2p!d
ul~p,t !v i~q,t !1 f i~k,t !,

~2!

where n is the viscosity,q5k2p, and the steady state i
assumed to be supported by the external random forcing
f(x,t).

Now considering the solenoidal and compressive part
the field v(x,t), and dropping the self-advection terms, t
respective dynamical equations become

S ]

]t
1nk2D v i

S~k,t !52 ik l Pi j ~k!E ddp

~2p!d
ul~p,t !v j

C~q,t !

1 f i
S~k,t !, ~3!

S ]

]t
1nk2D v i

C~k,t !52 ik lP i j ~k!E ddp

~2p!d
ul~p,t !v j

S~q,t !

1 f i
C~k,t !, ~4!

where the superscriptsS and C denote the solenoidal an
compressive parts, respectively, andPi j (k)5(d i j
2kikj /k2), andP i j (k)5kikj /k2. Further

wi
S~k,t !5Pi j ~k!wj~k,t !, ~5!

wi
C~k,t !5P i j ~k!wj~k,t !, ~6!

for any general fieldw(x,t), the Fourier transform of which
is w(k,t).

Now giving the equations a similar treatment as that
the direct-interaction approximation and after Markovianiz
tion, one obtains, for steady state
04630
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hS~k!5
4g2k2

Sd~d21!2E ddp bS~k,q,p!
E~p!

hS~k!1hC~q!1h~p!
,

~7!

hC~k!5
2g2k2

Sd~d21!
E ddp bC~k,q,p!

E~p!

hC~k!1hS~q!1h~p!
,

~8!

in d space dimensions, wherehS(k), hC(k), andh(k) are
the respective relaxation rates, andSd52pd/2/G(d/2). The
scaling factorg was introduced by Kraichnan as the model
equally plausible with respect to scaling the characteri
times. This was evaluated by Kraichnan considering equi
rium situation where the direct-interaction approximation
expected to be exact, yieldingg51.064. The geometrica
factors in the above integrals~7! and ~8! are given by

bS~k,q,p!5
1

2
bC~k,q,p!5

1

2 H 12S k•p

kp D 2J H 12S k•q

kq D 2J .

~9!

Further, Kraichnan identified the following correlation b
tween the solenoidal part and the actual velocity field:

^v i
S~k,t !v j

S~k8,t8!&5^ui~k,t !uj~k8,t8!&. ~10!

We assume that the solenoidal velocity field has the corr
tion

^ui~k,t !uj~k8,t8!&5Q~k,t !Pi j ~k!~2p!ddd~k1k8!d~ t2t8!.
~11!

We shall further assume that the external driving fields h
Gaussian white noise statistics, and the solenoidal part
the correlation

^ f i
S~k,t ! f j

S~k8,t8!&5FS~k!Pi j ~k!~2p!ddd~k1k8!d~ t2t8!,
~12!

with

FS~k!5
2D0

kd241y
, ~13!

wherey is an external parameter. It follows from the abo
relations that

Q~k,0!5
FS~k!

2hS~k!
. ~14!

The energy spectrumE(k), in the steady state, is define
through

1

2
^u2~x,t !&5E

0

`

E~k!dk, ~15!

so that it is related to the velocity correlation by
5-2
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E~k!5
d21

2

Sd

~2p!d
kd21Q~k,0!. ~16!

With this formulation of the test-field model generalize
to d dimensions, we now proceed to find the analytic pro
erties of the response integrals~7! and ~8!.

III. PROPERTIES OF THE RESPONSE INTEGRALS

Assuming thath(k), hS(k), and hC(k) scale like kz,
power counting in Eqs.~7! and ~8! gives z522y/3, after
making use of Eqs.~13!, ~14!, and~16!. Consequently we ge
h(k);k22y/3 andE(k);k122y/3. So we take

hS~k!5mSAC«̄1/3k22y/3, ~17!

hC~k!5mCAC«̄1/3k22y/3, ~18!

h~k!5mAC«̄1/3k22y/3, ~19!

E~k!5C«̄2/3k122y/3. ~20!

Thus the Kolmogorov spectrumE(k);k25/3 is obtained
wheny54.

To find the ultraviolet behavior (p→`) of the response
integrals~7! and ~8!, we expand the integrand in the lim
p@k, and then pick up the lowest-order contribution ink/p.
In this limit we haveq'p, h(p)'h(q)@h(k) ~suppressing
the superscripts!, and bS(k,q,p);1. Thus the integral be
haves like p2y/3 which diverges only fory<0, when p
→`. Thus, for the Kolmogorov spectrum which is obtain
for y54, the integrals do not pose any problem in the ult
violet limit.

For the infrared limit (p→0), we expand the integral in
the limit p!k and subsequently pick up the lowest contr
uting order in p/k. Now, q'k, h(p)!h(k)'h(q), and
bS(k,q,p);p2/k2. Thus, the integrals behave likep422y/3,
and hence the integrals diverge fory>6. Thus we find again
that the integral is well behaved on the infrared side for
Kolmogorov casey54.

Thus the response integrals~7! and~8! are both ultraviolet
and infrared finite in the region 0,y,6. Consequently, this
situation is unlike the direct-interaction approximatio
where the response integral diverges fory>3, giving rise to
a spurious non-Kolmogorovk23/2 spectrum.

IV. PERTURBATIVE EVALUATION

Having analyzed the behavior of the response integr
we now set out to evaluate the integrals in Eqs.~7! and ~8!
by means of Laurent expansions about the UV and IR po
at y50 andy56, respectively.

For the UV pole, the integrands are to be Taylor expan
in the limit p@k. The geometrical factor given by Eq.~9!
yields the expansion as

bS~k,q,p!5
1

2 H 12S k•p

kp D 2J 2H 11
2k•p

p2
1•••J . ~21!
04630
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The expansion of the characteristic memory time of the fo
u123(k,q,p)5@h1(k)1h2(q)1h3(p)#21, where the damp-
ing factors have the formh i(k)5cik

22y/3 ( i 51,2,3) can be
obtained as

u123~k,q,p!5
1

~c21c3!p22y/3 H 11S 22
y

3D c3

c21c3

k•p

p2

1•••J , ~22!

where the constantsci can be identified with those appearin
in Eqs. ~17!, ~18!, and ~19!. Combining the above two ex
pansions, we get

u123~k,q,p!bS~k,q,p!5
1

2~c21c3!p22y/3 H 12S k•p

kp D 2J 2

3F11H 21S 22
y

3D c3

c21c3
J k•p

p2

1•••G . ~23!

Thus we observe that thek•p term in the square bracket
contributes nothing as the angular integration of odd pow
of k•p vanish. Consequently, they dependance does no
make any difference so far ase expansion~like that in
Yakhot-Orszag RG calculations! is concerned.

Now we Taylor expand the integrands in the limitp!k in
order to obtain the IR pole. This gives

u123~k,q,p!bS~k,q,p!5
1

2~c11c21c3!

p2

k2 H 12S k•p

kp D 2J 2

1••• ~24!

for y56, for which the integrals are IR marginal.
Using the above expanions from Eqs.~21!, ~22!, ~23!, and

~24! in Eqs. ~7! and ~8!, after properly identifying the con-
stantsci with those appearing in Eqs.~17!, ~18!, ~19!, and
using Eq.~20! and the following results for angular integra
tions

R dV5Sd , R cos2u dV5
Sd

d
,

and

R cos4u dV5
3Sd

d~d12!
, ~25!

whereu is the angle betweenk andp, we finally obtain the
Laurent expansion about the polesy50 andy56 as
5-3
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mS56g2
~d11!

d~d21!~d12! F 1

mC1m
H 1

y
1O~1!J

1
1

mS1mC1m
H 1

62y
1O~1!J G , ~26!

mC56g2
~d11!

d~d12! F 1

mS1m
H 1

y
1O~1!J

1
1

mC1mS1m
H 1

62y
1O~1!J G . ~27!

Now writing mC/mS5a, and using the Kolmogorov valu
y54, we get after dividing Eq.~27! by Eq. ~26!

3a214a5
d21

2
~a217a16! ~28!

in the lowest order.
Thus in three dimensions, we have

2a223a2650, ~29!

yielding

a5
36A57

4
~30!

giving a52.6375, choosing the positive sign. Using this r
sult in Eq. ~26! yields mS50.3758g. These results may b
compared with Kraichnan’s numerical~exact! results, a
52.163 andmS50.296g.

In two dimensions, on the other hand, we have

5a21a2650, ~31!

yielding

a5
21611

10
, ~32!

so that a51, exactly matching Kraichnan’s result. Usin
this result in Eq.~27!, we obtainmS5A21/32g50.8101g,
whereas Kraichnan obtainedmS50.609g.

Using the above results, the Kolmogorov constants can
evaluated, using Kraichnan’s results@15#

C3D53.022~mS!2/351.5736g2/351.6401, ~33!

C2D58.94~mS!2/357.7689g2/358.09696, ~34!

and

C2D

C3D
54.94, ~35!

in the lowest order of our perturbative evaluation.
04630
-
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V. DISCUSSION AND CONCLUSION

The main difficulty in evaluating the response integra
~7! and~8!, exactly by analytical means, arises because t
contain scale dependent relaxation rates as sums in the
nominator of the integrands. The relaxation rates obey a s
ing law, with fractional powers, leading to impossibility o
evaluating these integrals exactly. Such integrals occu
critical dynamics of systems as varied as liquid helium, a
tiferromagnet, Heisenberg ferromagnet, etc., and various
turbative methods of evaluation of such integrals occuring
critical dynamics have been considered by Bhattacharjee
Ferrell @17#.

We realize the importance of the application of the pert
bative evaluation procedure in the case of the Kraichna
test-field model of turbulence, because now we can comp
the perturbative results with the exact ones. Kraichnan’s
act results by numerical computation areC3D51.40, C2D
56.694, andC2D /C3D54.786@15#. When we compare them
with the lowest-order perturbative results of our calculatio
presented in the last section@in Eqs.~33!, ~34!, and~35!#, we
see that there is a good agreement between the results, k
ing in mind the extent of approximation involved in th
present evaluation procedure. It may be pointed out tha
Kraichnan’s~numerical! evaluation, the parametery was held
fixed at the Kolmogorov value of 4, whereas in the pres
perturbative scheme, we extracted the singularities aty50
andy56, and retained only the lowest-order terms. Cons
ering this, we can say that the perturbative evaluat
method yields reasonable estimates for the universal n
bers.

The motivation for such perturbative evaluation by
double expansion about only two points can be justifi
when we see that a response integral,I (y) say, is a function
of y, and it has poles at several pointsy5y1 , y2 , . . . . Thus,
a Laurent expansion around all its poles can be construc
yielding

I ~y!5
a1

y2y1
1

a2

y2y2
1•••, ~36!

where a1 , a2 , . . . are the corresponding residu
~strengths!. The poles aty50 and y56 being the closes
ones to the physical Kolmogorov valuey54, we expect that
these poles will yield the maximum contribution.

We further point out an interesting feature of the pert
bative results when we compare them with the existing
sults of renormalization group~RG! calculations in three and
two dimensions. Yakhot and Orszag@18# used a Wilson type
decimation scheme to carry out the RG calculations in th
dimensions coupled with ane expansion~see also Refs.
@19,20#!, leading toC3D51.6057. Olla@21#, on the other
hand, used a field-theoretic RG formalism for the case
two-dimensional turbulence. Olla’s result was shown to
consistent with a self-consistent formulation based on
namic scaling ideas in Ref.@22#. It may be pointed out tha
Olla @21# used a definition ofE(k) different from that of
Kraichnan @15#. A definition consistent with Kraichnan
5-4
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would introduce a factor of12 in Eq. ~6! of Ref. @21#. Then
Olla’s ~correct! result would beC2D58.123.

Thus we see that the RG results are in close agreem
with our results of perturbative evaluations obtained in E
~33! and ~34!. As we know, the RG schemes are based oe
expansion only about one point: abouty50 in three dimen-
sions and abouty56 in two dimensions. However, when w
look at the results of our perturbative evaluation, we find t

mS5
4g2

5m F0.275

y
1

0.216

62y G , ~37!

mC5
8g2

5m F0.5

y
1

0.216

62y G , ~38!

in three dimensions and

mS5mC5
3g2

4m F0.5

y
1

0.333

62y G ~39!

in two dimensions. Thus we see the most interesting
about the perturbative TFM result that both the UV and
poles have strengths of the same order of magnitude. C
squently, the TFM closure is~approximately! equally sensi-
tive to both the poles. This feature of the perturbative TF
results is in sharp contrast with the RG schemes, altho
the resulting Kolmogorov constants are in agreement w
each other. This difference in pole structures in the two
proaches~RG and TFM! is not unexpected because the u
derlying formulations of RG and TFM are entirely differen
In both the Yakhot-Orszag RG and the RG of Olla, the sta
ing points were the~forced! full Navier-Stokes equation. In
contrast, Kraichnan’s test-field model starts with the pr
sureless advection of a test field and subsequently the
advection terms in the dynamics of the solenoidal and co
pressive parts are thrown away. Given the difference in
backbones of the two approaches~RG and TFM!, it is worth-
while to discuss further about the origin of the differenc
between RG and TFM.
04630
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As noted above, the selective choice of interactions
TFM is made in order to gauge the effect of pressure. C
sequently, TFM involves the geometrical factorsbS,C(k,q,p)
in the response equations~7! and~8!, given by Eq.~9!. As a
result, the IR limitp!k yields O(p2/k2) term in the lowest
contributing order, as can be seen in Eq.~24!. It is, in fact,
this ~extra! factor of p2/k2 that makes TFM finite in the IR
limit, and we now see that it contributes equally strongly
the UV pole.

This is at variance with the RG schemes which pick
contribution from only one of the poles depending on t
space dimension. The Yakhot-Orszag RG in 3D recursiv
eliminates modes from the UV end using the full Navie
Stokes equation, with an imposed self-similarity of the rec
sive procedure. This allows an expansion only abouty50
~reminiscent of extraction of UV pole! and the IR behavior is
irrelevant in this RG scheme. It may be noted in passing t
Kraichnan’s DIA closure, also based on the full Navie
Stokes equation~like RG!, with no imposed selective choic
of interaction~unlike TFM!, involves a different geometrica
factor b(k,q,p) in its response equation. Consequently, t
IR limit p!k yields O(p0/k0) term in the lowest contribut-
ing order, leading to IR catastrophe. In two dimensions,
la’s RG is based on the Navier-Stokes equation augme
with a drag term. In its field-theoretic setup with minim
subtraction, it extracts only the IR pole aty56. The drag
term in the dynamics plays an important role in this R
scheme.

It is because of the above differences in the underly
formulations ~of RG and TFM! that RG is an expansion
about only one value ofy (0 or 6 depending on dimension!
whereas, in perturbative TFM, both the poles are releva
the difference in the pole structures is not therefore un
pected. However, what we would not have expected ab
the perturbative TFM is the surprising result that the tw
poles have roughly equal strengths in both three and
dimensions. And, to add more, the Kolmogorov consta
following from the perturbative TFM agree well with th
results of RG.
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